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The electronic spectrum of diketene was investigated by the technique of variable-angle, electron energy loss
spectroscopy, using the impact energies of 25 and 50 eV, and varying the scattering angle°ftorA0
Transitions have been observed at 4.36, 5.89, 6.88, and 7.84 eV. On the basis of the intensity variation of
these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the
first three are tentatively assigned to an-nwr* transition, ar — 0*(3s) Rydberg transition, anda— 7*
transition.

I. Introduction forbidden ones, become more intense with respect to the
optically allowed processes at large scattering anglés.
Another advantage of the electron-impact method is that spectral
features in the far ultraviolet are as easily examined as those in
the visible and near-ultraviolet.

Electron-impact spectroscopy has been employed to study
electronic transitions in a wide variety of moleculésand the
measured differential cross sections have been utilized to aid
in assignment of transitior’s5 In this work, low-energy
variable-angle electron-impact spectroscopy has been used tq; gxperimental Section
investigate both optically forbidden and optically allowed ) ) o
electronic transitions in the spectrum of diketene. Previous The electron spectrometer used in this study was similar to
optical studie%” of diketene in solution extended to 250 nm ©One described previousk Briefly, an electron beam is energy-
(about 5 eV) and showed only a weak, ultraviolet, absorption selected by a hemlspherlcal electrostatic energy analyzer (and
band at 313 nm (3.96 eV). The present gas-phase work showdhe as_somated fgcusmg Iens_es) and scz_ittgred from the target
four new, higher energy loss, electronic transitions including a Vapor in a scattering box. In this work, the incident-beam current
spin-forbidden one. The diketene (4-methyleneoxetan-2-one)Was between land 10 nA and was typically 4 nA. Sample
structuré? was elucidated by X-ray diffractiéhin 1952, 45 pressures were estimated to be b.etween 5 and 10 mTorr.
years after its first preparation. The planarity of the four- Electron-energy losses were determined at angles betwéen 10
membered ring has been established by Raman spectroScopy. @nd 90 by means of a second electrostatic energy analyzer and
Recently, infrared and Raman spectra of diketene have beerdetector. The energy-loss spectrum thus obtained is analogous
investigated theoretically by quantum chemistry metH@ds. to an optical absorption spectrum, except that optically forbidden

Information about the nature of the excited electronic states Processes are much more readily deteéted. _
observed in an electron-impact spectrum can be obtained by The spectrometer resolution (as measured by the full width

studying the dependence of the intensity of each transition on at half-maximum of the elastically scattered feature) varied
impact energy and scattering angté? Transitions which in ~ Petween 50 and 100 meV for all reported spectra and was
optical spectroscopy are both electric-dipole-allowed and spin- YPically 80 meV. Diketene was obtained from Aldrich, and
allowed have differential cross sections (DCS) in electron-impact Nad @ stated purity of 98%. All samples were subjected to three
spectroscopy which are forward-peakéd?In contrast, spin-  llduid nitrogen freeze pump-thaw cycles and used without
forbidden transitions involving changes in the molecular spin further purification.
quantum number byt1, such as singlet> triplet excitation,
have more nearly isotropic DCS in the angular rangé—10
90°.13.14 Such transitions occur by the mechanism of electron  Figure 1 shows the low energy loss portion of the diketene
exchangé® Spin-allowed but electric-dipole-forbidden processes electron-impact spectrum at () = 50 eV,6 = 10°; (b) Eo =
are forward-peaked, but often not as much as fully allowed 50 eV, 6 = 90°; (c) E; = 25 eV, 6 = 10°; and (d)Ep = 25 eV,
transitionst®17 As reflected in the different DCS shapes, the 6 = 90°. These figures indicate the presence of four transitions
optically forbidden processes, and in particular the spin- having maximum intensities at 4.36, 5.89, 6.88, and 7.84 eV
energy loss. In Figure 2 we display the corresponding differential
t Part of the special issue “Aron Kuppermann Festschrift’. Contribution Cross-section curves at the impact energies of 25 and 50 eV,
ey o o s oo o S, Pianed by a method previousy descried
Federgll'rLeJ?\?\?enrslitygofLIJDernémbuco, 50670-901 Recﬁe, PE, Brazil. ' _The T“OSt intense fez_iture has a peak intensity at 6.88 eV
+Work performed in partial fulfillment of the requirements for the Ph.D.  From Figure 2 the elastic peak and the peak at 6.88 eV exhibit
o Eresent adirest: Ingiiuie for Defense Analyses, T80LK. Beauregardan o o e o i ey o T I TUde Over he
Street, Alexandria, VA 223111772, yses, : 9ardangular range, indicative of fully allowed bands. The transitions
I'Present address: Intel Corporation, AL3-17, 5200 N. E. Elam Young &t 7.84 and 5.89 eV have DCS curves less forward-peaked, but
Parkway, Hillsboro, OR 97124. they can still be considered as allowed bands. The DCS of the
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IIl. Results and Discussion
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Figure 1. Diketene electron energy loss spectra atHay> 50 eV, 0 = 10°; (b) Eo = 50 eV, 6 = 90°; (c) Eo = 25 eV, 0 = 10°; and (d)E; =
25 eV,0 = 90°.
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Figure 2. Differential cross sections of diketene at &)= 50 eV and (b)E, = 25 eV. Elastic scatterindl) and transitions to the excited states
lying at 4.36 (), 5.89 (1), 6.88 (+), and 7.84 eV %) above the ground state.

4.36 eV transition is nearly isotropic and has the characteristic transition observed in earlier optical studies of diketene in

behavior of a spin-forbidden transitida1® solution is not observed in our spectra, and cannot be justified
Until now, no far-ultraviolet spectra of diketene have been by these simple arguments.

reported. In the absence of any calculations directly relevantto  Diketene contains two important chromophores: the carbonyl

the electronic spectroscopy of this molecule, we are tentatively and the ethylene groups. The carbonyl in small monoketones

assigning these observed transitions of diketene under theexhibits the well-known (ng*) band in the ultraviolet followed

qualitative assumptions described below. The weak ultraviolet by three Rydberg bands (n, (3s, 3p, 3d)) in the far-ultraviéflet.
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